# extinction_risk_1.R # $Id: extinction_risk_1.R,v 1.24 2017/12/23 00:18:12 hako Exp $ # # Author: Hiroshi Hakoyama # Copyright (c) 2013-2017 Hiroshi Hakoyama , All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Description: # Estimates the demographic parameters and the probability of # extinction within a specific time period, t, from a time series # of population size based on the Wiener-drift process model. # An estimator for confidence interval of extinction risk # developed by Hakoyama (w-z method, in preparation) is implemented, # which is better than the estimator by the ordinary Delta method. # # Usage: # ext1(dat, tt = 100, ne = 1, alpha = 0.05, verbose = FALSE, # better.CL = FALSE, n.sim = 10000, alpha.sim = 0.05, qq.plot = FALSE, formatted = TRUE) # # Arguments: # dat data.frame of 2 variables: Time and Population size # tt a time period of interest # ne a lower (extinction) threshold of population size (ne >= 1) # alpha 1 - confidence level # verbose If set to FALSE, give the ML estimate of the probability # of extinction within a specific time period tt. If set to # TRUE, give a more verbose output: # the ML estimate of the growth rate (mu), # the ML estimate of variance (s), # Current population size, xd = log(N(q) / ne), # Sample size, n = q + 1, # AIC for the distribution of N, # the ML estimate of the probability of extinction within # a specific time period t (P), # a lower (1 - alpha) % confidence limit of parameter * # (lower.CL.*), and # an upper (1 - alpha) % confidence limit of parameter * # (upper.CL.*). # better.CL If set to FALSE, give a CI by the w-z method. # If set to TRUE, give a better CI. # n.sim The number of iteration for the better CI method. # alpha.sim Level of significance to decide the convergence of iteration. # qq.plot If set to TRUE, give a QQ plot for log(n_i/n_{i-1})/sqrt(tau_i) ~ N(0, 1). # formatted If set to TRUE, give the result by formatted output. # If set to FALSE, give a list of estimates. # References: # R. Lande and S. H. Orzack. Extinction dynamics of age-structured # populations in a fluctuating environment. Proceedings of the # National Academy of Sciences, 85(19):7418-7421, 1988. # B. Dennis, P. L. Munholland, and J. M. Scott. Estimation of # growth and extinction parameters for endangered species. # Ecological Monographs, 61:115-143, 1991. # H. Hakoyama (in preparation). # ext1 <- function(dat, tt = 100, ne = 1, alpha = 0.05, verbose = FALSE, better.CL = FALSE, n.sim = 10000, alpha.sim = 0.05, qq.plot = FALSE, formatted = TRUE) { yr <- dat[, 1] # Year n <- dat[, 2] # Population size complete <- complete.cases(yr, n) yr <- yr[complete] n <- n[complete] ti <- yr - yr[1] # elapsed time, ti = \{t_0 = 0, t_1, \dots, t_q\} tau <- diff(ti) # time intervals, \tau_i = t_i - t_{i-1} delta.log.n <- diff(log(n)) qq <- length(yr) - 1 tq <- ti[length(ti)] nq <- n[length(n)] mu <- log(nq / n[1]) / tq # MLE of growth rate s <- sum((delta.log.n - mu * tau)^2 / tau) / qq # MLE of variance us <- qq * s / (qq - 1) # an unbiased estimate of variance xd <- log(nq / ne) lnl <- - sum(log(n[-1] * sqrt(2 * tau * pi))) - (qq / 2) * log(s) - sum((1 / tau) * (delta.log.n - mu * tau)^2) / (2 * s) AIC <- - 2 * lnl + 2 * 2 # AIC for the distribution of N (population size) # \log(n_i/n_{i-1})/\sqrt{\tau_i} \sim N(0, 1) if (qq.plot == TRUE) { qqnorm(delta.log.n / tau) qqline(delta.log.n / tau) } lower.CL.mu <- mu - qt(1 - alpha / 2, qq - 1) * sqrt(us / tq) upper.CL.mu <- mu + qt(1 - alpha / 2, qq - 1) * sqrt(us / tq) lower.CL.s <- qq * s / qchisq(1 - alpha / 2, qq - 1) upper.CL.s <- qq * s / qchisq(alpha / 2, qq - 1) ww <- W(mu, xd, s, tt) zz <- Z(mu, xd, s, tt) pp <- Pr(ww, zz) if (better.CL == TRUE) { CL.P <- BetterConfidenceInterval(mu, xd, s, tt, tq, qq, alpha, n.sim, alpha.sim) } else { CL.P <- ConfidenceInterval(mu, xd, s, tt, tq, qq, alpha) } lower.CL.P <- CL.P[[1]] upper.CL.P <- CL.P[[2]] if (verbose == TRUE) { results <- list(ne = ne, tt = tt, verbose = verbose, alpha = alpha, AIC = AIC, sample.size = qq + 1, nq = nq, xd = xd, Growth.rate = mu, lower.CL.mu = lower.CL.mu, upper.CL.mu = upper.CL.mu, Variance = s, lower.CL.s = lower.CL.s, upper.CL.s = upper.CL.s, # Unbiased.variance = us, Extinction.probability = pp, lower.CL.P = lower.CL.P, upper.CL.P = upper.CL.P) if (formatted == TRUE) { class(results) <- "ext1" } return(results) } else { results <- list(ne = ne, tt = tt, verbose = verbose, Extinction.probability = pp) if (formatted == TRUE) { class(results) <- "ext1" } return(results) } } #------------------------------------------------------------------- W <- function(mu, xd, s, tt) (mu * tt + xd) / sqrt(s * tt) #------------------------------------------------------------------- Z <- function(mu, xd, s, tt) (- mu * tt + xd) / sqrt(s * tt) #------------------------------------------------------------------- Pr <- function(w, z) { if(z < 35) { pnorm(-w) + exp((z^2 - w^2) / 2) * pnorm(-z) } else { pnorm(-w) + exp(- w^2 / 2) * (sqrt(2) / (2 * sqrt(pi))) * (1 / z - 1 / z^3 + 3 / z^5 - 15 / z^7 + 105 / z^9 - 945 / z^11 + 10395 / z^13) } } #------------------------------------------------------------------- ConfidenceInterval <- function(mu, xd, s, tt, tq, qq, alpha) { den.1 <- sqrt(s * tt) w.est <- (mu * tt + xd) / den.1 z.est <- (- mu * tt + xd) / den.1 df <- qq - 1 const.1 <- sqrt((qq - 1) * tq / (qq * tt)) const.2 <- sqrt(tq / tt) FindCL <- function(tq, qq, tt, est, a, width = 10) { t.obs <- const.1 * est f <- function(x) pt(t.obs, df, const.2 * x) - a d.est <- est / width + 1 uniroot(f, c(- d.est + est, d.est + est), extendInt = "yes")$root } lower.CL.w <- FindCL(tq, qq, tt, w.est, 1 - alpha / 2) upper.CL.w <- FindCL(tq, qq, tt, w.est, alpha / 2) lower.CL.z <- FindCL(tq, qq, tt, z.est, 1 - alpha / 2) upper.CL.z <- FindCL(tq, qq, tt, z.est, alpha / 2) lower.CL.P <- Pr(upper.CL.w, lower.CL.z) upper.CL.P <- Pr(lower.CL.w, upper.CL.z) c(lower.CL.P, upper.CL.P) } #------------------------------------------------------------------- randomCI <- function(mu.obs, xd, s.obs, tt, tq, qq, alpha, ci.function = ConfidenceInterval) { mu <- rnorm(1, mean = mu.obs, sd = sqrt(s.obs / qq)) s <- rchisq(1, df = qq - 1) * s.obs / qq ci.function(mu, xd, s, tt, tq, qq, alpha) } #------------------------------------------------------------------- RejectionRate.lower <- function(mu.obs, xd, s.obs, tt, tq, qq, alpha, gam, n.sim, ci.function = ConfidenceInterval) { P.obs <- Pr(W(mu.obs, xd, s.obs, tt), Z(mu.obs, xd, s.obs, tt)) CI.dist <- replicate(n.sim, randomCI(mu.obs, xd, s.obs, tt, tq, qq, alpha, ci.function)) complete <- complete.cases(CI.dist[1, ]) CL <- CI.dist[1, ][complete] n.estimables <- length(CL) n.rejects <- sum(P.obs < CL) if (n.estimables > 0) { binom <- binom.test(n.rejects, n.estimables, p = gam / 2) } else { binom <- list(estimate = NaN, p.value = NaN) } c(binom$estimate[[1]], binom$p.value) } #------------------------------------------------------------------- RejectionRate.upper <- function(mu.obs, xd, s.obs, tt, tq, qq, alpha, gam, n.sim, ci.function = ConfidenceInterval) { P.obs <- Pr(W(mu.obs, xd, s.obs, tt), Z(mu.obs, xd, s.obs, tt)) CI.dist <- replicate(n.sim, randomCI(mu.obs, xd, s.obs, tt, tq, qq, alpha, ci.function)) complete <- complete.cases(CI.dist[2, ]) CL <- CI.dist[2, ][complete] n.estimables <- length(CL) n.rejects <- sum(P.obs > CL) if (n.estimables > 0) { binom <- binom.test(n.rejects, n.estimables, p = gam / 2) } else { binom <- list(estimate = NaN, p.value = NaN) } c(binom$estimate[[1]], binom$p.value) } #------------------------------------------------------------------- BetterConfidenceInterval <- function(mu.obs, xd, s.obs, tt, tq, qq, alpha, n.sim, alpha.sim, ci.function = ConfidenceInterval, verbose = FALSE, min.iteration = 5) { P.obs <- Pr(W(mu.obs, xd, s.obs, tt), Z(mu.obs, xd, s.obs, tt)) if (P.obs == 0 || P.obs == 1) { return(ci.function(mu.obs, xd, s.obs, tt, tq, qq, alpha)) } rr.lower <- RejectionRate.lower(mu.obs, xd, s.obs, tt, tq, qq, alpha, alpha, n.sim, ci.function) rr.upper <- RejectionRate.upper(mu.obs, xd, s.obs, tt, tq, qq, alpha, alpha, n.sim, ci.function) if (rr.lower[[2]] > alpha.sim && rr.upper[[2]] > alpha.sim) { # cat("No need of using the better CI method.", "\n") return(ci.function(mu.obs, xd, s.obs, tt, tq, qq, alpha)) } p.value.lower <- 0 gamma.lower <- alpha i <- 0 while (i < min.iteration || p.value.lower < alpha.sim) { i <- i + 1 rr.lower <- RejectionRate.lower(mu.obs, xd, s.obs, tt, tq, qq, gamma.lower, alpha, n.sim, ci.function) f.lower <- rr.lower[[1]] p.value.lower <- rr.lower[[2]] if (verbose == TRUE) cat("gamma =", gamma.lower, "f_hat(gamma) =", f.lower, "p-value =", p.value.lower, "\n") gamma.lower <- gamma.lower - (f.lower - alpha / 2) / i } p.value.upper <- 0 gamma.upper <- alpha i <- 0 while (i < min.iteration || p.value.upper < alpha.sim) { i <- i + 1 rr.upper <- RejectionRate.upper(mu.obs, xd, s.obs, tt, tq, qq, gamma.upper, alpha, n.sim, ci.function) f.upper <- rr.upper[[1]] p.value.upper <- rr.upper[[2]] if (verbose == TRUE) cat("gamma =", gamma.upper, "f_hat(gamma) =", f.upper, "p-value =", p.value.upper, "\n") gamma.upper <- gamma.upper - (f.upper - alpha / 2) / i } c(ci.function(mu.obs, xd, s.obs, tt, tq, qq, gamma.lower)[[1]], ci.function(mu.obs, xd, s.obs, tt, tq, qq, gamma.upper)[[2]]) } #------------------------------------------------------------------- print.ext1 <- function(obj, digits = 5) { if (obj$verbose == TRUE) { output.est <- data.frame( c(formatC(obj$Growth.rate, digits = digits), formatC(obj$Variance, digits = digits), formatC(obj$nq, digits = digits), formatC(obj$xd, digits = digits), formatC(obj$sample.size, digits = digits), formatC(obj$AIC, digits = digits), formatC(obj$Extinction.probability, digits = digits)), c(paste("(",formatC(obj$lower.CL.mu, digits = digits),", ", formatC(obj$upper.CL.mu, digits = digits),")", sep = ""), paste("(",formatC(obj$lower.CL.s, digits = digits),", ", formatC(obj$upper.CL.s, digits = digits),")", sep = ""), "-", "-", "-", "-", paste("(",formatC(obj$lower.CL.P, digits = digits),", ", formatC(obj$upper.CL.P, digits = digits),")", sep = ""))) dimnames(output.est) <- list( c("Growth rate:", "Variance:", "Current population size, nq:", "xd = ln(nq / ne):", "Sample size, q + 1:", "AIC for the distribution of N:", paste("Probability of decline to", obj$ne, "within", obj$tt, "years:")), c("Estimate", paste(as.character(100 * (1 - obj$alpha)), "% CI"))) print(output.est) } else { output.est <- data.frame( c(formatC(obj$Extinction.probability, digits = digits))) dimnames(output.est) <- list( c(paste("Probability of decline to", obj$ne, "within", obj$tt, "years:")), c("Estimate")) print(output.est) } } # # Examples # Yellowstone grizzly bears (from Dennis et al., 1991) dat <- data.frame(Year = c(1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987), Population = c(44, 47, 46, 44, 46, 45, 46, 40, 39, 39, 42, 44, 41, 40, 33, 36, 34, 39, 35, 34, 38, 36, 37, 41, 39, 51, 47, 57, 47)) # The probability of extinction (of decline to population size 1) within 100 years # ext1(dat, t = 100) # The probability of decline to 10 individuals within 100 years # ext1(dat, t = 100, ne = 10, verbose = TRUE) # with QQ-plot # ext1(dat, t = 100, ne = 10, verbose = TRUE, qq.plot = T) # The probability of decline to 1 individuals within 100 years with a better confidence interval # ext1(dat, t = 100, ne = 1, verbose = TRUE, better.CL = TRUE)